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W Newton’s Laws

1. Law (law of inertia):

A body, which no forces act upon, continues to move with
constant velocity.

= A resting body is just a special case of this law.

2. Law (law of action):

-

-

If a force F acts on a body with mass m, then the body
accelerates, and its acceleration is given by
F=m-a

/

= |n other words: force and acceleration are proportional to each other;
(the proportionality factor happens to be m). In aprticular, both force

and acceleration have the same direction.
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3. Law (law of reaction):

If a force F, that acts on a body, is extended to another body,
Then the opposite force —F acts on that other body.

= |n school, you learn: "action= reaction"

4. Law (law of superposition):

If a number offorces Fq, ..., F,, act on a point or body, then they
can be accumulated by vector addition yielding one resulting
force:

F=F+..+F,.
N 1 " /
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Y Historical Digression

= Newton published these laws in his
original book

Principia Mathematica
(1687):

= Lex |. Corpus omne perseverare in statu
suo quiescendi vel movendi uniformiter
in directum, nisi quatenus illud a
viribus impressis cogitur statum suum
mutare.

= lex Il. Mutationem motus J

proportionalem esse vi motrici
impressae, et fieri secundum lineam
rectam qua vis illa imprimitur.
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= Definition:
A mass-spring system is a system consisting of:
1. Aset of point masses m; with positions x; and velocities v;,i=1...N;

2. Asetofsprings s;j = (i, j, ks, ka) , where s;; connects
masses i und j, with rest length lg , spring constant ks (= stiffness) and the
damping coeffizient ky

= Advantages:

= Very easy to program

= |deally suited to study different kinds of solving methods

= Ubiquitous in games (cloths, capes, sometimes also for deformable objects)
= Disadvantages:

= Some parameters (in particular the spring constants) are not obvious, i.e.,
difficult to derive

= No built-in volumetric effects (e.g., preservation of volume)
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Y  ASingle Spring (Plus Damper)

= Given: masses m; and m; with positions x; , X;

" Let r;; = oA
Tk =il

= The force between particlesiandj :

1. Force extended by spring (Hooke's law):

fJ = kerj(|x;

~Xi|| = o)

acts on mass m; in direction of m;

2. Force extended by damper :

3. Sum of forces :

4. Force on m; : f/
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Notice: from (4) follows that the momentum is conserved
= |.e., the kinetic energy is conserved

= Momentum = velocity x mass = v-m

= Note on terminology:

= German "KraftstoR" = English "Impulse" = force x time

= German "Impuls" = English "momentum" = force x mass

1%j — xill — Lo

= Alternative Federkraft: f2 = Kstij

lo

= A spring-damper element in reality:
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U  Simulation of a Single Spring

= From Newton’s law, we have: X = %f

Convert differential equation (DE) of order 2 into DE of order 1:
u(t) = f(t)

x(t) = v(t)

Initial values (boundary values): v(ty) = vy, X(ty) = Xo

"Simulation" = "Integration of DE's over time"

= By Taylor expansion we get:
x(t + At) = x(t) + At x(t) + O(At?)

" Analogeously: v (t + At) = v (t) + At v (t)

—> This integration scheme is called explicit Euler integration
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The Algorithm

forall particles i

initialize x,;, v;, m;

loop forever:
forall particles i

f,' — f¢& + fI-CO” + Z f(X,‘, V;, Xj, Vj)

Ji (ij)eS
forall particles i
f.
V, + = At'—l
m;j
X, = At-V,'

render system every n-th time

G. Zachmann

f9 =gravitational force
f ol = penalty force exerted by collision (e.g., with obstacles)
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= Advantages:
= Can be implemented very easily

= Fast execution per time step

= Disadvantages:

= Stable only for very small time steps
- Typically At = 104 ...1073 sec!

= With large time steps, additional energy is generated "out of thin air",
until the system explodes ©

= Example: overshooting when simulating a single spring

= Errors accumulate quickly
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Example for the Instability of Euler Integration

Consider the diferential equation
x(t) = —kx(t)

" The exact solution:

X(t) = Xp e Kt

Euler integration does this:

X" = xt + At(—kx")
= Case At > % :
x'h = x" (1 — kAt)

A J
~

<0

= x!t oscillates about 0, but approaches 0 (hopefully)

CaseAt>%: = xl— oo |
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o, d

= Visualization:

position

time

= Terminology: if k is large — the DE is called "stiff "
= The stiffer the DE, the smaller At has to be
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Visualization of Error Accumulation

Consider this DE:

Exact solution: ( qb)
rcos(t +
x(t) = (rsin(t + qb))

= The solution by Euler integration
moves in spirals outward, no

matter how small At!

= Conclusion: Euler integration
accumulates errors, no matter

how small At!
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Visualization of Differential Equations

= The general form of a DE:
x(t) = f(x(t),t)

= Visualization of f as a vector field:

= Notice: this vector field can vary over time!

= Solution of a boundary value problem = path through this field
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= Runge-Kutta of order 2:

= |dea: approximate f( x(f), t) by a quadratic function that is defined at
positions x(f), x( t+ 12At ) and v(t)

= The integrator (w/o proof):

1
a; =v' a, = —f(x",v")
m
b, = v+ lAta b, = if(xt + 1Ata vi+ lAta )
1 5 Ata 2= > Ata, 5 Ataz
xT = x' + Atb, vitl = vt + Atb,

= Runge-Kutta of order 4:
= The standard integrator among the explicit integration schemata

= Needs 4 function evaluations (i.e., force computations) per time step

= Order of convergence is: e(At) = O(At?)
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= Runge-Kutta of order 2:

Y
//
—
h2 | h?2 X
Xn xn+1

= Runge-Kutta of order 4:

G. Zachmann
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W  Verlet Integration

= A general, alternative method to increase the order of
convergence: utilizes values from history

= Verlet: utilize x(t-At)
= Derivation:

= Develop the taylor series in both time directions:

x(t + At) = x(t) + Atx(t) + %At%&(t) - %At3')'('(t) + 0(AtY)

x(t — At) = x(t) — Atx(t) + %Atzi(t) — %Aﬁ'ﬁ((t) + 0(At?Y)
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= Add both:
x(t + At) + x(t — At) = 2x(t) + At” %(t) + O(At*)

x(t + At) = 2x(t) — x(t — At) + At* %(t) + O(At*)

" |nitialization:

x(At) = x(0) + Atv(0) + %Atz(if(x(O), v(0)))

m

= Remark: the velocity does not occur any more!
(at least, not explicitely)
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= Big advantage of Verlet over Euler & Runge-Kutta:
it is very easy to handle constraints

= Definition: constraint = some condition on the position of one or
more mass points

= Examples:

1. A point must not penetrate an obstacle

2. The distance between two points must be constant,

or distance must be < some specific distance
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= Examples:

= Consider the constraint:

]
[x1 — 2| = lo

1. Perform one Verlet integration step — %!*1

2. Enforce the constraint: d

d
I_H I_H
o---- - --—9
X1 lo X
xt+1 _ it—i—l lr (H~t—|—1 t—|—1|| ] )
t+1 _ gt+l Sot+1 t—|—1
X =X ——r1 (I1%3 1| = lo)
d
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" Problem: if several constraints are to constrain the same mass
point, we need to employ constraint algorithms
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U Implicit Integration

= All integration schemes are only conditionally stable
= |.e.: they are only stable for a specific range for At
= This range depends on the stiffness of the springs

= Goal: unconditionally stability

= One option: implicit Euler integration

explicit implicit
xITh = x! + Atv! xITh = xt + Atvit!
utH = ! utHl = Lo e
— vt At f(xt) SV At f(xt
m;j m;j

= Now we've got a system of non-linear, algebraic equations, with
x*1 and v#'! as unknowns on both sides — implicit integration

G. Zachmann Virtual Reality & Simulation WS  December 2013 Mass-Spring-Systems

23



eeeeee

W Solution Method g

= Write the whole spring-mass system with vectors:

( 111\ ( 511\
(Xl\ X13 (Vl\ Vi3 f1(x)

\xQ J 22 \v'n ) 22 fn(x)

)

|
A
h h
N =
/NN
X X
N N’
\—/

=

3

X

w

S
3
N

3

N

Mmp

mp

\ )
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= Write all the implicit equations as one big system of equations :

Myt = Myt 4+ Atf(x") (1)
Xt—I—l _ Xt_|_AtVt—|—1 (2)

= Plug (2) into (1) :

Myt = Myt + At f(x' + Atvt™) 3)

= Expand f as Taylor series:

f(x" + At vi™h) = f(x") + g f( ) (At vt (4)

+ O(( At vt+1)2)
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= Plug (4) into (3):

M vt—|—1

a t t+1
— f(x")-(Atv*) )
K

= Mv' 4+ Atf(x') + At* K vt

M vt + At (f(xt) +

= K is the Jacobi-Matrix, i.e., the derivative of f (wrt. x):

0 0
Ox11 fll Ox1o fll S Ox3 fll
K : . . - .
18] 0
8711 fn3 o o o o o 8Xn3 fn3

= K is called the tangent stiffness matrix

- (The normal stiffness matrix is evaluated at the equilibrium of the system:
here the matrix is evaluated at an arbitrary "position" of the system in phase
space, hence the name "tangent ...")
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Reorder terms :

(M —At? K) vt = Mvf + At f(x")

Now, this has the form:

Avitl = p
mit Ac R3"X37  pc R

Solve this system of linear equations with any of the iterative
solvers

Don't use a non-iterative solver, because
= A changes with every frame (simulation step)

= We can "warm start" the iterative solver with the solution as of last frame
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W Computation of the Stiffness Matrix

= First, understand the anatomy of matrix K :

= A spring (i,j) adds the following four 3x3 block matrices to K:

3i_>( - _ \

I’ .

3| — 4/7
] Kii)  [Kis

3 3

= Matrix Kj; arises from the derivation of f; = (fi1, fi, f;3)
wrt. X;= (Xj],ij, ng):

9 £

8Xj1 f;]' (9X2 fl 8X13 fl
K,’j —

(9XJl f3 aXJ3 f3

= In the following, consider only f* (spring force)
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= First of all, compute Kij;:

0
Kii = a—xl_fi(xi, Xj)

9,

x._x.
= k. ( C—X;) — lp—2 ’)
o\ %) —lop
—1-[lx;j — ;|| = (x; — Xi)'2(|)|(i-__x>i<)ﬁ
= k| —=T—1o Ml
=]
1 21 .
= k(—T+1 I = x) (% — X
( o =l T g =P X ")>
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= Reminder:
1y -reste
g g2

s, s, ! x"
el = o (Vg g ) =2
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= From some symmetries, we can analogously derive:

0
" Kij = a—xjfi(xi. x;) = —Ki

0 0
" K= &’5’(’9,)(1) — &(—f,(x,,xj)) = Kij
J J

Kii = Kij
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W  Overall Solution Algorithm

= |nitialize K=0

= For each spring (i,j) compute K, K., K:;, K:: and accumulate it

iir Nijr Njir
to K at the right places

= Compute b= Mv" + At f(x")

Solve the linear equation system Avit' =b — yi*!

= Compute x"t' = x' + Atv'H!
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U Advantages and Disadvantages

= Explicit integration:
+ Very easy to implement
- Small step sizes needed
- Stiff springs don't work very well
- Forces are propagated only by one spring per time step
= Implicit Integration:
+ Unconditionally stable
+ Stiff springs work better
+ Globale solver — forces are being propagated throughut the
whole pring-mass system with one time step

- Large stime steps are needed, because one step is much more
expensive (if real-time is needed)

- The integration scheme introduces damping by itself (might be
unwanted)
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= Visualization of: x(t) = —x(t)

position

time \\\\

= |Informal Descripiton:

= Explicit jumps forward blindly, based on current information

= Implicit jumps backward and tries to find a future position such that the
backwards jump arrives exactly at the current point (in phase space)
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®0o Mass Spring System Demo

Display a menu Z

http://www.dhteumeuleu.com/dhtml/v-grid.html
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W  Mesh Creation for Volumetric Objects

= How to create a mass-spring system for a volumetric model?

= Direct conversion of 3D (surface) geometry into spring-mass
system does not yield good results:
= Geometry has too high a complexity
= Degenerate polygons
= Better (and still simple) idea:
= Create a tetrahedron mesh out of the geometry (somehow)

= Each vertex (node) of the tetrahedron mesh becomes a mass point,

each edge a spring

= Distribute the masses of the tetraeder (= density x volume) equally

among the mass point

G. Zachmann Virtual Reality & Simulation WS  December 2013 Mass-Spring-Systems
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= Generation of the tetrahedron mesh (simple method):

= Distribute a number of points uniformly (perhaps randomly) in the
interior of the geometry (so called "Steiner points")

= Dito for a sheet/band above the surface

= Connect the points by Delaunay triangulation (see my "Geometric
Data Structures for CG" course)

" Anchor the surface meshes within the tetraeder mesh:

= Represent each vertex of the surface mesh by the barycentric
combination of its surrounding tetrahedron vertices

G. Zachmann Virtual Reality & Simulation WS  December 2013 Mass-Spring-Systems
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= |n addition (optionally):

= Anchor the outer mass points (of

the tetrahedron mesh) at
(imaginary) walls

= Introduce diagonal
"struts" (Streben)
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W Collision Detection

= Put all tetrahedra in a 3D grid (use a hash table!)

" |n case of a collision in the hash table:

= Compute exact intersection between the 2 involved tetrahedra
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Collision Response el

= Task: objects P and Q (= tetrahedral meshes) collide —
what is the penalty force?
= Naive approach:

= For each mass point of P that
has penetrated, compute its
closest distance from the surface
of Q — force (amount + direction)

= Problem:

= Implausible forces

= "Tunneling" (s. a. the chapter on force-feedback)
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= Examples:

inconsistent

<

/
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Y  Consistente Penalty Forces

1. Phase: identify all points of P that
penetrate Q

2. Phase: determine all edges of P that

intersect the surface of Q

= For each such edge, compute the exact

intersection point x;

= For each intersection point, compute a

normal n;

- E.g., by barycentric interpolation of the vertex

normals of Q
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intersecting edge
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3. Phase: compute the approximate force for border points

= Border point = a point p that penetrates Q and is incident to an

Observation: a border point can be incident to several intersecting edges

Set the penetration depth for point p

Zf(:l w(x;, p) (x; — p)-n;
Zf{:1 w(x;, p)

where d(p) = approx. penetration depth

to

d(p) =

of mass point p, x; = point of the
intersection of an edge incident to p with
surface Q, n;=normal to surface of Q
at point x;,

1

and CU(X,',p) = m
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= Direction of the penalty force on border points:

Zf'(:1 W(Xi, P) n;
>y w(xi, p)

r(p) =

4. Phase: propagate forces by way of breadth-first traversal through
the tetrahedron mesh

fozl w(pi p)((pi — p)-ri + d(pi))
> w(xi, p)

where p; = points of P that have been visited already, p = point
not yet visited, r;= direction of the estimated penalty force in

point p; .

d(p) =
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W  Visualization
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W  Video

<n
£ X))

Consistent Penetration
Depth Estimation
for Deformable
Collision Response

http://cg.informatik.uni-freiburg.de
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